Main Article Content

Abstract

The human gastrointestinal tract harbors a diverse and dynamic microbiome, comprising trillions of bacteria, viruses, fungi, and archaea that interact intricately with the host immune system. This bidirectional crosstalk is central to the maintenance of homeostasis and the prevention of chronic diseases. Over the past decade, advances in metagenomics, metabolomics, and immunology have unraveled the profound influence of gut microbiota-derived signals on both mucosal and systemic immunity. Short-chain fatty acids, microbial metabolites, and structural components such as lipopolysaccharides and peptidoglycans act as key mediators that calibrate the immune tone, influencing innate and adaptive responses. Dysbiosis, or disruption in microbial balance, has been implicated in inflammatory bowel disease, autoimmune disorders, metabolic syndromes, neuroinflammatory conditions, and cancer immunotherapy outcomes. This review provides a comprehensive analysis of the microbiome–immune crosstalk, tracing its molecular and cellular pathways, delineating its systemic reach beyond the gut, and highlighting its therapeutic potential. We explore recent findings on microbial modulation of T cells, dendritic cells, and macrophages, the role of microbial metabolites in epigenetic programming, and the emerging field of microbiota-targeted therapeutics. The manuscript concludes with future perspectives on precision microbiome engineering for immune modulation and translational challenges in clinical application.

Keywords

Microbiome; Gut–immune axis; Systemic immunity; Dysbiosis; Short-chain fatty acids; Immunomodulation.

Article Details

References

  1. 1. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.
  2. 2. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-141.
  3. 3. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75-84.
  4. 4. Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature. 2019;569(7758):641-648.
  5. 5. Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-227.
  6. 6. Pickard JM, et al. Gut microbiota: roles in immunological tolerance and intestinal inflammation. Clin Sci. 2017;131(5):471-482.
  7. 7. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium. Proc Natl Acad Sci USA. 2008;105(43):16731-16736.
  8. 8. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-323.
  9. 9. Thaiss CA, et al. The microbiome and innate immunity. Nature. 2016;535(7610):65-74.
  10. 10. Atarashi K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337-341.
  11. 11. Furusawa Y, et al. Commensal microbe-derived butyrate induces differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450.
  12. 12. Campbell C, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581(7809):475-479.
  13. 13. Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569-573.
  14. 14. Trompette A, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159-166.
  15. 15. Clarke TB, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med. 2010;16(2):228-231.
  16. 16. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565-576.
  17. 17. Frank DN, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104(34):13780-13785.
  18. 18. Vatanen T, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842-853.
  19. 19. Routy B, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97.
  20. 20. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373-384.
  21. 21. Koh A, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345.
  22. 22. McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48(1):39-49.
  23. 23. Sonnenberg GF, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321-1325.
  24. 24. Netea MG, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098.
  25. 25. Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485-498.
  26. 26. Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-455.
  27. 27. Bunker JJ, et al. Innate and adaptive humoral responses to the gut microbiota. Mucosal Immunol. 2017;10(6):1369-1377.
  28. 28. Matson V, et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma
  29. patients. Science. 2018;359(6371):104-108.
  30. 29. Fellows R, et al. Microbiota derived short-chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun. 2018;9(1):105.
  31. 30. Puleston DJ, et al. Polyamines and immune regulation. Nat Rev Immunol. 2021;21(12):710-717.
  32. 31. Johnson JL, et al. Microbiota-dependent tuning of miRNA expression in dendritic cells. Nat Commun. 2015;6:6279.
  33. 32. Khosravi A, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014;15(3):374-381.
  34. 33. Hang S, et al. Bile acid metabolites control Th17 and Treg cell differentiation. Nature. 2019;576(7785):143-148.
  35. 34. Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the gut microbiota. Cell Host Microbe. 2014;15(1):37-49.
  36. 35. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341-352.
  37. 36. Budden KF, et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol. 2017;15(1):55-63.
  38. 37. Trompette A, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159-166.
  39. 38. Yeoh YK, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in COVID-19 patients. Gut. 2021;70(4):698-706.
  40. 39. Erny D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965-977.
  41. 40. Cryan JF, et al. The microbiota–gut–brain axis. Physiol Rev. 2019;99(4):1877-2013.
  42. 41. Salem I, et al. The gut microbiome as a major regulator of the gut–skin axis. Front Microbiol. 2018;9:1459.
  43. 42. O'Neill CA, et al. The gut–skin axis in health and disease. Nat Rev Gastroenterol Hepatol. 2016;13(2):93- 106.
  44. 43. Albillos A, et al. The gut–liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020;72(3):558-577.
  45. 44. Tripathi A, et al. The gut–liver axis and the intersection with the gut microbiome. Nat Rev Gastroenterol Hepatol. 2018;15(7):397-411.
  46. 45. Gopalakrishnan V, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103.
  47. 46. Routy B, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy. Science. 2018;359(6371):91-97.
  48. 47. Baruch EN, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602-609.
  49. 48. Zmora N, et al. Personalized gut mucosal colonization resistance to probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388-1405.
  50. 49. Deehan EC, Walter J. The fiber gap and the disappearing gut microbiome. Nutrients. 2016;8(11):859.
  51. 50. Plaza-Diaz J, et al. Mechanisms of action of probiotics. Adv Nutr. 2019;10(Suppl_1):S49-S66.
  52. 51. Gibson GR, et al. Expert consensus document: The concept of synbiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502.
  53. 52. Cammarota G, et al. European consensus on fecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569-580.
  54. 53. Davar D, et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021;371(6529):595-602.
  55. 54. Paramsothy S, et al. Long-term follow-up of fecal microbiota transplantation for ulcerative colitis. Lancet. 2019;394(10197):634-645.
  56. 55. Charbonneau MR, et al. Engineering the gut microbiome for disease prevention and treatment. Nat Rev Microbiol. 2023;21(2):125-140.
  57. 56. McCoubrey LE, et al. Regulatory considerations for live biotherapeutic products. Nat Rev Drug Discov. 2022;21(5):386-403.
  58. 57. Proctor LM, et al. The integrative human microbiome project. Nature. 2019;569(7758):641-648.
  59. 58. Derosa L, et al. The microbiome and immunotherapy: Current knowledge and future perspectives. Science. 2022;377(6602):eabj2211.