Main Article Content

Abstract

Three-dimensional (3D) printing has rapidly emerged as a transformative technology in pharmaceutical manufacturing, particularly within the United Kingdom, where personalised therapeutics and sustainability targets increasingly shape innovation strategies. Material selection plays a critical role in determining the performance of fused deposition modelling (FDM), influencing printability, thermal stability, mechanical behaviour, drug release characteristics, regulatory acceptability, and environmental impact. This review provides a comprehensive comparison of three major classes of polymeric filaments polylactic acid (PLA), polyvinyl alcohol (PVA), and cellulose-based materials currently used in pharmaceutical additive manufacturing. Drawing on recent scientific literature and empirical insights from UK pharmaceutical stakeholders, the article evaluates their respective advantages and limitations in terms of printability, drug–polymer compatibility, biocompatibility, sustainability attributes, and operational feasibility in real-world settings. PLA offers excellent printability and favourable environmental performance but is limited by its brittleness and high processing temperatures. PVA remains the most pharmaceutically versatile polymer due to its solubility and long-established excipient status, though its moisture sensitivity and low biodegradability present challenges. Cellulose-based filaments exhibit exceptional sustainability and biocompatibility but continue to face printability and processing limitations. The review underscores the need for improved filament engineering, clearer regulatory guidance, and adoption of lifecycle-based material assessment frameworks to support sustainable pharmaceutical 3D printing in the UK. Advances in green polymer science and hybrid bio-based filaments may ultimately enable broader clinical translation and environmentally responsible manufacturing.

Keywords

3D printing; fused deposition modelling; PLA; PVA; cellulose; pharmaceutical manufacturing; sustainability; biodegradable polymers; drug delivery; UK pharmaceutical sector.

Article Details

References

  1. 1. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printing. J Pharm Sci. 2017;106(1):1–10. doi:10.1016/j.xphs.2016.10.001
  2. 2. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications recent achievements and challenges. Pharm Res. 2018;35(9):176. doi:10.1007/s11095-018-2454-x
  3. 3. Trenfield SJ, Awad A, Madla CM, et al. Shaping the future: 3D printing in the pharmaceutical sciences. Pharmaceutics. 2018;10(2):E20. doi:10.3390/pharmaceutics10020020
  4. 4. Lee Ventola C. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704–11.
  5. 5. Goyanes A, Det-Amornrat U, Wang J, et al. 3D scanning and 3D printing as innovative tools for personalized topical drug delivery. J Control Release. 2016;234:41–48. doi:10.1016/j.jconrel.2016.05.034
  6. 6. Jamróz W, Kurek M, Szafraniec J, Knapik-Kowalczuk J, Jachowicz R. 3D printing of pharmaceutical formulations containing active pharmaceutical ingredients. Pharm Res. 2018;35(9):176. doi:10.1007/s11095-018-2454-x
  7. 7. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4(9):835–864. doi:10.1002/mabi.200400043
  8. 8. Woodruff MA, Hutmacher DW. The return of a forgotten polymer polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256. doi:10.1016/j.progpolymsci.2010.04.002
  9. 9. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on HPMC. Adv Drug Deliv Rev. 2001;48:139–157. doi:10.1016/S0169-409X(01)00112-0
  10. 10. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing for fabrication of tablets. Int J Pharm. 2014;476(1–2):88–92. doi:10.1016/j.ijpharm.2014.09.044
  11. 11. Awad A, Trenfield SJ, Goyanes A, et al. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547–1555. doi:10.1016/j.drudis.2018.05.025
  12. 12. Kabir SMF, Sikdar P, Haque MM, et al. Moisture absorption properties of polyvinyl alcohol (PVA). J Polym Environ. 2017;25(4):854–866. doi:10.1007/s10924-016-0854-y
  13. 13. Thomas B, Raj MC, Athira KB, et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Carbohydr Polym. 2018;198:329–356. doi:10.1016/j.carbpol.2018.06.089
  14. 14. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504. doi:10.1016/j.mattod.2013.11.017
  15. 15. Hottle TA, Bilec MM, Landis AE. Life cycle assessment of PLA, PP, and PET. J Clean Prod. 2017;164:1195–1205. doi:10.1016/j.jclepro.2017.07.016
  16. 16. Xu X, Li Y, Fang X, et al. Characterization of cellulose nanocrystals for biodegradable composites. Carbohydr Polym. 2013;92(1):406–412. doi:10.1016/j.carbpol.2012.09.045
  17. 17. Shaghaleh H, Xu X, Wang S. Current progress in cellulose and cellulose nanofibers. Materials. 2018;11(4):579. doi:10.3390/ma11040579
  18. 18. Jamróz W et al. Application of 3D printing in the pharmaceutical industry. J Pharm Sci. 2018;107(6): 1647–1659.
  19. 19. Algahtani MS, Mohammed AA, Ahmad J. 3D printing in formulation, development and industrial application: a review. Drug Dev Ind Pharm. 2021;47(1):1–15. doi:10.1080/03639045.2020.1840637
  20. 20. Pereira BC, Isreb A, Forbes RT. 3D printing of pharmaceuticals: a state-of-the-art review. Int J Pharm. 2020;582:119–293. doi:10.1016/j.ijpharm.2020.119293
  21. 21. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA. Adv Drug Deliv Rev. 2016;107:367–392.
  22. 22. Tafti AP, et al. Mechanical properties of PLA in FDM. Polym Test. 2021;93:106879.
  23. 23. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. doi:10.1186/s13036-015-0001-4
  24. 24. Wang L, Gardner DJ, Stark NM. PLA–cellulose composites in 3D printing. Compos Sci Technol. 2018;168: 214–221.
  25. 25. Melocchi A, Uboldi M, Parietti F, et al. Hot-melt extrusion and 3D printing for pharmaceuticals. Drug Dev Ind Pharm. 2019;45(4): 1018–1030.
  26. 26. Kolakovic R, Laaksonen T, Peltonen L, et al. Spray-dried PVA for drug delivery. Eur J Pharm Sci. 2013;50(3–4):312–322.
  27. 27. Li H, Liu B, Pei Y, et al. PVA-based 3D printed tablets: drug release modulation. Int J Pharm. 2022;623:121–230.
  28. 28. Strain I, Wu W, Bodratti AM. Moisture effects on PVA filament. J Appl Polym Sci. 2020;137:49522.
  29. 29. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose biocomposites. Angew Chem Int Ed. 2005;44:3358–3393.
  30. 30. Agarwal UP. Chemical modification of cellulose. Cellulose. 2019;26:107–132.
  31. 31. Visanko M, Sirviö JA, Liimatainen H. Thermoplastic cellulose nanomaterials. ACS Appl Mater Interfaces. 2020;12(2): 356–370.
  32. 32. Scoutaris N, Ross SA, Douroumis D. 3D printed drug delivery devices. J Drug Deliv Sci Technol. 2018;44: 421–430.
  33. 33. Peppas NA, Langer R. Hydrophobic polymer drug release. Science. 1994;263(5154):1715–1720.
  34. 34. Pitt CG. Controlled release from PLA-based devices. J Control Release. 1990;16: 23–30.
  35. 35. Martin C, et al. Influence of polymer crystallinity on API release. Polymers. 2018;10:1268.
  36. 36. Goyanes A et al. FDM printing for personalized medicines. Int J Pharm. 2016;499(1–2): 157–167.
  37. 37. Khaled SA, Burley JC, Alexander MR, Roberts CJ. 3D printing of five-drug polypills. J Control Release. 2015;217:308–314.
  38. 38. Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients. 6th ed. London: Pharmaceutical Press; 2009.
  39. 39. Nair SS, Zhu JY, Deng Y. Cellulose nanofibrils for drug delivery. Carbohydr Polym. 2014;112: 640–649.
  40. 40. NHS England. Delivering a ‘Net Zero’ National Health Service. 2020. Available from: https://www.england.nhs.uk/greenernhs/net-zero
  41. 41. Vink ETH, Davies S. Life cycle assessment of PLA production. Ind Biotechnol. 2015;11(4):167–180.
  42. 42. Zolnai Z, et al. Environmental persistence of PVA. J Environ Chem Eng. 2021;9(4):105–117.
  43. 43. Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review. Chem Soc Rev. 2011;40:3941–3994.
  44. 44. Middleton JC, Tipton AJ. Synthetic biodegradable polymers. Biomaterials. 2000;21:2335–2346.
  45. 45. CP Kelco. PVA excipient safety profile. Technical Monograph. 2019.
  46. 46. MHRA. Guidance on 3D printing of medical products. 2021. Available from: https://www.gov.uk/mhra