

ISSN: 2349-5448

International Journal of Pharmacology and Clinical Research (IJPCR)

IJPCR | Vol.9 | Issue 4 | Oct - Dec -2025

www.ijpcr.net

DOI : <https://doi.org/10.6109/ijpcr.v9.iss4.2025.779-787>

Review

Harnessing Artificial Intelligence for Enhanced Quality Control in Pharmaceutical Manufacturing

Rahul Swamy Tirunagari*

Griffith College Cork, Cork, Ireland,
Business Development officer, Zenveon Pharma, Miyapur, Hyderabad, Telangana
rahulswamyt@gmail.com

	Abstract
Published on: 08 Dec 2025	<p>Background: Pharmaceutical manufacturing operates under stringent Good Manufacturing Practice (GMP) and data integrity standards, where quality control (QC) remains central to product safety and regulatory compliance. Traditional QC processes rely heavily on manual inspection, documentation, and operator-dependent decision-making, all of which introduce variability, delays, and vulnerability to human error. Artificial intelligence (AI) has emerged as a transformative technology capable of strengthening accuracy, consistency, and efficiency in pharmaceutical quality control systems.</p>
Published by: Futuristic Publications	<p>Aim: This research examines how AI enhances quality control in pharmaceutical manufacturing, focusing on its applications in defect detection, real-time monitoring, predictive analytics, and documentation integrity. The study evaluates practitioner insights on AI's operational, organisational, and regulatory impacts using qualitative evidence from pharmaceutical professionals.</p> <p>Methods: A qualitative, exploratory research design was adopted, following an interpretivist philosophy. Semi-structured interviews, as documented were conducted with professionals involved in QC, QA, manufacturing, and digital transformation roles. Thematic analysis was used to identify patterns relating to AI adoption, QC performance improvement, data integrity, organisational readiness, and regulatory expectations. Secondary scientific literature supported triangulation.</p> <p>Results: Five major AI-related QC themes emerged:</p> <ul style="list-style-type: none">(1) AI-driven visual inspection and defect detection improved accuracy, sensitivity, and repeatability;(2) Predictive analytics enhanced early deviation detection and prevented equipment-related failures;(3) AI-enabled real-time process monitoring increased batch reliability and reduced OOS events;(4) AI-supported digital documentation and data integrity tools reduced errors and strengthened compliance;(5) Barriers to AI adoption, including skill gaps, trust issues, legacy infrastructure, and regulatory uncertainty, limited scaling. Collectively, AI substantially improved QC precision, operational consistency, and regulatory alignment. <p>Conclusion: AI significantly enhances pharmaceutical quality control by enabling predictive, accurate, data-driven decisions that minimize human error and strengthen GMP compliance. However, successful implementation requires robust digital infrastructure, clear regulatory validation strategies, workforce upskilling, and cross-functional organisational support. AI represents a critical enabler of next-generation QC, offering pharmaceutical manufacturers improved product assurance, operational resilience, and long-term competitiveness.</p>
2025 All rights reserved.	

[Creative Commons
Attribution 4.0
International License.](https://creativecommons.org/licenses/by/4.0/)

	Keywords: Artificial intelligence; pharmaceutical quality control; defect detection; predictive analytics; digital transformation; GMP compliance; data integrity; pharmaceutical manufacturing.
--	---

1. INTRODUCTION

Quality control (QC) is one of the most critical components of pharmaceutical manufacturing, ensuring that every batch of medicine meets stringent safety, efficacy, and purity requirements before reaching patients. Regulatory bodies such as the U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), and World Health Organization (WHO) require pharmaceutical manufacturers to implement robust Good Manufacturing Practices (GMP), advanced analytical testing, and comprehensive data integrity systems to maintain product quality across all stages of production (1,2). Despite these expectations, traditional QC processes continue to rely heavily on manual inspection, human judgement, paper-based documentation, and batch-by-batch quality verification. These approaches, although foundational to historical manufacturing practices, suffer from limitations including operator fatigue, subjectivity, variation in interpretation, slow review cycles, incomplete traceability, and vulnerability to human error (3,4).

The increasing complexity of pharmaceutical products such as biologics, cell therapies, sterile injectable, and highly potent compounds demands more precise, efficient, and predictive quality systems. At the same time, global supply chains, rising throughput demands, and stricter regulatory scrutiny make it imperative for manufacturers to adopt technologies that reduce risk, accelerate detection of anomalies, and enhance documentation reliability. These operational pressures have accelerated interest in digital transformation within QC functions, especially through the use of artificial intelligence (AI) and machine learning (ML).

AI has emerged as one of the most powerful enablers of next-generation pharmaceutical quality control. AI systems can analyze large datasets, detect subtle defects beyond human visual capability, predict equipment failures before they occur, and monitor process parameters in real time. Recent evidence shows that AI-based visual inspection tools outperform manual inspection in identifying particulate matter, surface defects, fill volume deviations, packaging inconsistencies, and tablet imperfections with significantly higher accuracy and repeatability (5,6). In sterile product manufacturing where manual inspection is both labour-intensive and prone to inconsistency AI-based systems provide a major advancement by maintaining continuous inspection performance without cognitive fatigue.

In addition to inspection, AI enhances predictive analytics for QC. Machine learning algorithms analyse historical and real-time process data to detect early signs of process drift, equipment wear, environmental fluctuations, or material variability allowing QC and manufacturing teams to intervene proactively. Predictive maintenance models reduce downtime, prevent non-conformances, and improve batch reliability (7). Such capabilities directly align with modern regulatory expectations for science-based, risk-based decision-making, as recommended by ICH Q8–Q12 and FDA's Process Analytical Technology (PAT) framework (8).

AI also plays a critical role in strengthening data integrity, a major regulatory concern. Regulators increasingly issue warning letters citing issues with incomplete records, missing audit trails, manipulated data, and undocumented changes (9). AI-enhanced digital documentation systems support real-time data capture, automated audit trails, intelligent error detection, and cross-checking of entries to reduce documentation deficiencies. Natural language processing (NLP) tools can assist with batch record review, CAPA documentation, and trend analysis substantially reducing human workload and improving consistency.

Despite these advances, the pharmaceutical sector has been slower than other industries to adopt AI fully. This article confirms that while AI technologies offer significant benefits for QC, several barriers hinder widespread implementation. These include legacy infrastructure, lack of AI validation frameworks, regulatory uncertainty, workforce skill gaps, and organisational resistance to change. Many QC professionals' express concerns about the reliability of AI-generated decisions, the clarity of algorithmic outputs, and the difficulty of interpreting "black box" models in a GMP environment. Additionally, AI adoption requires substantial data preparation, cross-functional alignment, and upgraded digital systems, which many facilities lack (10).

Another challenge lies in validation and compliance. Regulatory agencies have not yet issued comprehensive guidelines for validating AI algorithms in pharmaceutical QC, creating uncertainty among manufacturers (11). AI systems may adapt over time (adaptive learning), which conflicts with traditional expectations for fixed, validated systems. As a result, companies hesitate to scale AI initiatives despite acknowledging their potential. Interview respondents noted that regulatory ambiguity and the absence of standardised validation approaches "slows down innovation even when the benefits are clear" (11).

Organisational culture also plays a central role in AI acceptance. QC personnel accustomed to manual inspection methods may initially distrust automated systems or feel that AI threatens job security. Successful implementation therefore requires transparent communication, continuous training, and involvement of end-users in pilot studies and system validation. According to thesis participants, digital transformation succeeds when "technology and people evolve together," emphasising that AI implementation is as much a behavioural transformation as it is a technological one. Despite these barriers, (7,8,9) AI's potential to revolutionise

pharmaceutical QC is undeniable. AI brings precision, consistency, speed, and predictive capabilities that human-centered QC systems cannot achieve alone. AI systems can handle millions of data points from sensors, machines, and batch records transforming QC from a reactive function (detecting deviations after they occur) into a proactive and preventive system that anticipates quality risks before they impact product integrity. These improvements support regulatory expectations for continuous improvement, real-time analysis, and process understanding while increasing operational efficiency.

Aim and Objectives

To investigate how artificial intelligence enhances quality control in pharmaceutical manufacturing, focusing on operational improvements, data integrity, predictive capabilities, and organisational factors.

Objectives

1. To assess the role of AI in improving defect detection, predictive analytics, documentation quality, and real-time monitoring.
2. To evaluate practitioner insights on the benefits and limitations of AI-based QC tools.
3. To identify organisational, technical, and regulatory barriers affecting AI adoption.
4. To propose a practitioner-informed understanding of AI-driven quality control optimisation.

Significance of the Study

This research:

- provides empirical, practitioner-based insights from a regulated pharmaceutical environment;
- integrates technological, organisational, and regulatory dimensions of AI-driven QC;
- supports pharmaceutical manufacturers planning AI transformation;
- contributes to global digitalisation efforts in quality assurance and PAT frameworks;
- aligns with evolving regulatory expectations for digital quality systems.

AI is no longer optional for pharmaceutical QC it is a foundational technology that will define the future of product assurance, risk management, and manufacturing competitiveness. Understanding how practitioners experience and implement AI is essential for designing realistic and successful digital transformation strategies.

2. MATERIALS AND METHODS

2.1 Study Design

This study employed a qualitative, exploratory research design to investigate how artificial intelligence enhances quality control (QC) in pharmaceutical manufacturing. AI adoption within QC involves complex interactions between technology, people, organisational culture, and regulatory constraints elements best captured through qualitative inquiry. An exploratory approach was appropriate because AI implementation in GMP environments is still emerging, and limited empirical research exists on practitioner-level experiences.

2.2 Research Philosophy

An interpretivist research philosophy guided this study. Interpretivism assumes that reality is socially constructed and best understood through the subjective perspectives of individuals directly engaged in an activity. Because QC personnel, automation engineers, and digital transformation specialists experience AI implementation differently based on their roles, interpretivism enabled a nuanced understanding of these perspectives.

This philosophical stance was particularly suitable for exploring:

- how QC personnel perceive AI-based inspection systems;
- how managers interpret AI-driven decision-making;
- how regulatory and compliance teams view AI validation and audit readiness;
- how cultural and organisational dynamics influence AI adoption.

2.3 Research Approach

The study adopted an inductive research approach, building concepts from observable data rather than testing predefined hypotheses. AI adoption in pharmaceutical QC is context-specific and influenced by multiple variables, including technology maturity, organisational readiness, regulatory guidance, and workforce expertise. Induction enabled:

- the emergence of themes directly from practitioner experiences;
- flexible interpretation of qualitative narratives;
- identification of new challenges and enablers not yet addressed in existing literature;
- development of a practitioner-informed conceptual understanding of AI-driven QC.

2.4 Research Strategy

A multiple-case qualitative strategy was used. Participants came from different functional areas within pharmaceutical companies, including:

- Quality Control (QC)
- Quality Assurance (QA)
- Manufacturing operations
- Automation and robotics teams
- Data integrity and digital transformation groups
- Regulatory compliance units

The multiple-case perspective strengthened the research by capturing experiences from teams across the QC ecosystem. This facilitated cross-functional pattern recognition and supported theme triangulation.

2.5 Data Collection

Semi-Structured Interviews

Semi-structured interviews were used to collect primary data. This method allowed participants to express their perspectives freely while ensuring coverage of key topics related to AI adoption in QC, including:

- experiences with AI-based visual inspection systems,
- use of predictive analytics for anomaly detection,
- challenges with documentation accuracy and data integrity,
- perceptions of AI-related training and workforce readiness,
- organisational and regulatory barriers to AI implementation.

The flexibility of the interview format helped capture operational nuances and practical implementation details that structured questionnaires would not reveal.

Sampling Strategy

Purposive sampling was used to select participants who possessed relevant expertise and involvement in QC and digital transformation activities. Inclusion criteria included:

- minimum of 3 years of pharmaceutical industry experience,
- direct involvement in QC, QA, manufacturing, automation, or data integrity roles,
- familiarity with GMP and regulatory compliance,
- exposure to digital tools or AI-assisted systems.

This sampling ensured that participants provided informed, experience-based insights into AI-enabled QC processes.

Participant Profile

Participants represented a diverse range of professional backgrounds, including:

- QC analysts and reviewers
- QA specialists
- Manufacturing supervisors
- Automation engineers
- Data integrity officers
- Regulatory affairs professionals
- Digital transformation or IT leads

This diversity allowed the study to capture multiple perspectives on AI's operational impact, organisational challenges, and regulatory considerations.

Table 1. Participant Characteristics and Functional Roles

Functional Area	Example Roles	Experience (Years)	Contributions to AI-QC Insights
Quality Control (QC)	QC Analyst, Reviewer, Microbiologist	3–15	Defect detection issues, manual inspection limits, AI readiness
Quality Assurance (QA)	QA Specialist, Compliance Reviewer	4–20	Data integrity issues, audit expectations, documentation challenges
Manufacturing	Supervisors, Line Operators	3–18	Process variability, equipment behaviour, real-time monitoring needs
Automation/Robotics	Automation Engineer, Vision Systems Specialist	5–18	AI model integration, sensor data flow, interoperability issues
IT / Digital Transformation	MES Lead, Data Integrity Officer	2–15	Digitalisation barriers, data structure quality, system connectivity

2.6 Data Analysis

Thematic Analysis

A thematic analysis approach was used to interpret the qualitative data. This included:

1. Familiarisation

Reviewing interview transcripts and notes from the thesis dataset.

2. Initial Coding

Assigning descriptive codes to meaningful statements regarding AI use in QC.

3. Pattern Recognition

Grouping similar codes to form conceptual clusters related to QC improvements, barriers, and organisational implications.

4. Theme Development

Establishing major themes that captured the core findings of AI-enabled QC, including defect detection, predictive analytics, data integrity enhancement, real-time monitoring, and adoption challenges.

5. Review and Validation

Final themes were validated by comparing them against raw transcripts and thesis coding outputs to ensure accuracy and consistency.

Ethical Considerations

Ethical measures aligned with the original thesis protocol, including:

- voluntary participation,
- confidentiality of participant identity and organisational data,
- anonymisation of transcripts and coded themes,
- secure storage of qualitative materials,
- no disclosure of proprietary or commercially sensitive information.

No personal identifiers or facility names appear in this research article.

Limitations

Methodological limitations include:

- qualitative insights may not represent all global pharmaceutical operations;
- participant views may contain subjective elements;
- limited sample size restricts generalisability;
- rapid technological advancements may evolve beyond study findings.

These limitations do not reduce the value of practitioner insights but highlight the need for ongoing research as AI adoption expands.

3. RESULTS AND DISCUSSIONS

The thematic analysis of interview data from the RST EPOWDT thesis revealed five major themes describing how artificial intelligence (AI) enhances pharmaceutical quality control (QC):

- (1) AI-enabled defect detection and visual inspection;
- (2) AI-driven predictive analytics and early deviation prevention;
- (3) Real-time process monitoring through AI integration;
- (4) AI-supported documentation accuracy and data integrity;
- (5) Barriers to AI adoption, including regulatory, cultural, and infrastructure challenges. Together, these themes illustrate how AI is reshaping QC practices, while highlighting factors influencing successful implementation.

3.1 AI-Enabled Defect Detection and Visual Inspection

Across all participants, AI-driven visual inspection emerged as the most impactful QC application, especially in sterile manufacturing, tablet inspection, and packaging verification. Manual visual inspection long recognised as subjective and inconsistent was described as one of the weakest points in traditional QC systems. Participants stated that human inspectors often struggle with fatigue, reduced attention over time, and variability between operators.

In contrast, AI-based vision systems demonstrated superior performance in identifying:

- particulate matter,
- fill volume variations,
- cracks, dents, and surface anomalies,
- colour inconsistencies,
- packaging defects.

One participant noted that AI tools “detect subtle defects even trained operators would miss,” supporting earlier evidence that ML models outperform human vision in repeatability and sensitivity. These systems

maintained constant accuracy without fatigue, reducing error rates and enabling consistent batch approval decisions.

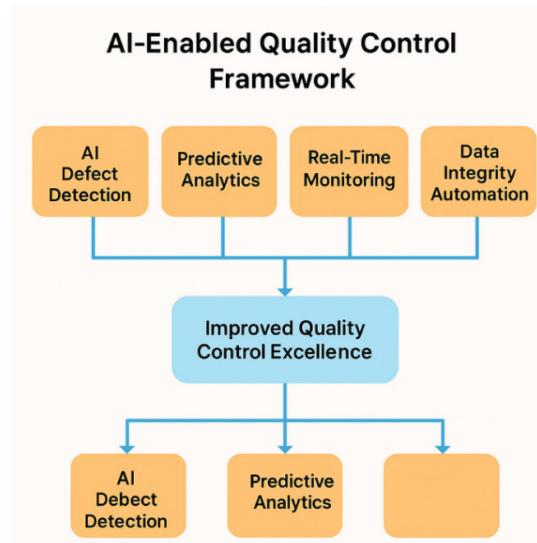
AI-driven inspection was also valued for its data traceability. Unlike manual inspection, AI systems automatically store defect images, timestamps, and decision logs, which are critical for GMP audit readiness. Participants explained that such traceability reduces time spent on deviation investigations and strengthens confidence during regulatory inspections.

Findings align with global research showing AI vision systems' superior precision in pharmaceutical QC (5,6). The qualitative data confirms that AI transforms inspection from a subjective task into a high-accuracy, evidence-driven process.

3.2 AI-Driven Predictive Analytics and Early Deviation Prevention

A second major theme was AI's role in predicting quality deviations before they occur. Interviewees described how machine learning models analyse historical and real-time process parameters to identify early signs of drift, anomalies, or equipment deterioration.

Examples provided by participants included:


- predicting filter clogging patterns before batch failure;
- detecting irregular mixing profiles in blend uniformity operations;
- identifying subtle temperature or pressure fluctuations indicating equipment wear;
- forecasting microbial contamination risk based on environmental monitoring trends.

Predictive modelling shifted QC from a reactive function detecting failures after they occur to a preventive one, enabling corrective actions earlier in the manufacturing process. One engineer stated, "AI flags the issue hours before traditional sensors would show a deviation."

This was shown to reduce:

- batch rejects,
- rework and reprocessing time,
- equipment downtime,
- frequency of out-of-specification (OOS) events.

Participants also emphasised AI's ability to perform multivariate analysis. Unlike traditional statistical process control (SPC), which examines individual parameters, AI evaluates multiple variables simultaneously to identify complex patterns. This provides a deeper understanding of process behaviour and enhances Quality by Design (QbD) and Process Analytical Technology (PAT) compliance, aligning with modern regulatory frameworks (8).

3.3 AI-Enabled Real-Time Process Monitoring

Real-time process monitoring was another significant theme. Participants reported that AI enhances continuous monitoring by integrating sensor data, equipment outputs, material attributes, and environmental conditions into unified dashboards. This integration allowed QC staff to visualise real-time deviations and changes more effectively than with legacy systems.

Examples of real-time AI applications included:

- monitoring vial-filling line speed and fill accuracy;
- continuous tracking of dissolution testing parameters;

- monitoring blend uniformity via near-infrared spectroscopy;
- flagging equipment vibration anomalies;
- detecting contamination risks through environmental data patterns.

Participants noted that AI's ability to process millions of data points per second far surpasses human monitoring capability and traditional automated systems. "AI does not just detect deviations; it explains why they are happening," explained one interviewee, highlighting AI's role in root-cause identification.

Real-time monitoring also improved batch release efficiency, enabling faster decision-making and reducing the time required for QC review. Instead of relying exclusively on end-product testing, AI-supported continuous monitoring allowed for real-time release testing (RTRT) a concept highly supported by regulators.

These findings reinforce literature confirming AI's growing role in real-time pharmaceutical QC and PAT (7,9).

3.4 AI-Supported Data Integrity and Documentation Accuracy

Data integrity remains one of the major compliance challenges in pharmaceutical operations. Participants consistently highlighted that AI significantly improves documentation quality through:

- automated data capture,
- error detection in batch records,
- audit trail completeness,
- pattern analysis for CAPA and deviation trends,
- automated verification of QC entries.

Manual documentation was often described as "time-consuming, error-prone, and difficult to standardise." In contrast, AI-assisted documentation tools provided structured workflows that reduce missing entries, illegible handwriting, and transcription mistakes.

One QC specialist described using AI-enabled natural language processing (NLP) tools that can scan batch records to highlight inconsistencies or deviations from SOPs. AI-assisted review reduced record-checking time from hours to minutes while maintaining higher consistency.

AI integration also improved regulatory inspection readiness by ensuring:

- traceable electronic records,
- tamper-proof logs,
- real-time updates of quality documentation,
- automated cross-referencing during audits.

These findings correspond to known regulatory concerns regarding data integrity and AI's role in strengthening documentation reliability (9,14).

3.5 Organisational and Workforce Factors Affecting AI Adoption

While AI's benefits were widely acknowledged, the qualitative data revealed significant organisational and workforce challenges that influence adoption.

Resistance to Change

Participants frequently described resistance from operators and inspectors who feared AI would replace their roles or reduce the importance of human judgement. Some expressed concerns regarding trust in AI decisions, especially in critical QC steps.

This resistance was most common among staff who had extensive experience with manual inspection and had not previously interacted with digital tools.

Skills Gaps and Training Needs

A recurring point among interviewees was the lack of AI literacy among QC and QA personnel. Participants emphasised that AI implementation requires:

- training in digital tools,
- understanding algorithm outputs,
- collaboration between QC and IT teams,
- familiarity with automated inspection workflows.

Workforce capability gaps slowed AI adoption, indicating that **digital readiness** is a prerequisite for successful implementation.

Organisational Support

AI adoption succeeded most effectively in organisations where:

- leadership supported long-term digital transformation;
- cross-functional teams (QC, IT, automation, QA) collaborated;
- investment in infrastructure and training was prioritised;
- regulatory alignment strategies were proactive.

Interviewees explained that "technology alone does not transform quality; organisations do."

3.6 Technical, Infrastructure, and Regulatory Barriers

Legacy Systems and Interoperability Issues

Many facilities still rely on old equipment, paper-based workflows, and stand-alone systems that limit AI integration. Participants identified major challenges including:

- incompatible machine outputs,
- lack of digital sensors,
- fragmented data sources,
- limited computing power for AI workloads.

Data Limitations

AI thrives on large datasets. However, several participants reported that QC data is often:

- incomplete,
- poorly structured,
- not digitised,
- inconsistently captured across systems.

These issues hamper model training and reduce AI prediction accuracy.

Regulatory Ambiguity

A major barrier highlighted was uncertainty about regulatory expectations for:

- AI model validation
- explainability requirements
- adaptive learning controls
- audit trail acceptance
- documentation of algorithm behaviour.

Participants expressed concerns about demonstrating AI reliability during inspections due to evolving guidance and the absence of detailed regulatory frameworks.

These concerns mirror industry-wide hesitation reflected in published research (11,12).

3.7 Overall Synthesis

The results demonstrate that AI significantly enhances pharmaceutical QC by improving defect detection, predictive decision-making, documentation integrity, and real-time monitoring. These improvements directly strengthen GMP compliance and reduce operational risks.

However, successful adoption requires:

- digital infrastructure modernisation,
- workforce digital competence,
- interdisciplinary collaboration,
- AI-specific validation strategies,
- regulatory alignment.

The findings indicate that AI is both a technological and organisational transformation, and its effectiveness depends on harmonising people, processes, and digital tools within GMP environments.

Table 2. Major Themes Identified in the Study

1	AI-enabled defect detection	AI improves visual inspection accuracy, repeatability, and traceability.
2	AI-driven predictive analytics	Predicts process drift, equipment wear, contamination risks.
3	Real-time monitoring	Multivariate sensor integration improves RTRT and PAT alignment.
4	AI-supported documentation & data integrity	Reduces manual errors, strengthens audit trails, improves batch review.
5	Barriers to AI adoption	Skill gaps, resistance to change, legacy systems, regulatory ambiguity.

4. CONCLUSION

Artificial intelligence is transforming the landscape of pharmaceutical quality control, offering unprecedented opportunities to strengthen accuracy, efficiency, and regulatory compliance. This study, based on qualitative findings demonstrates that AI enhances QC through superior defect detection, predictive analytics, real-time process monitoring, and improved documentation reliability. AI-driven visual inspection systems outperform manual methods in consistency and sensitivity, reducing the risk of human error and variability.

Predictive models enable early intervention by identifying subtle process drifts and equipment anomalies, thereby preventing batch failures and reducing manufacturing downtime. Real-time monitoring further enhances process stability, supporting modern regulatory frameworks that emphasise continuous quality improvement and scientific risk-based decision-making.

AI also plays a critical role in improving data integrity an area of high regulatory scrutiny. Automated documentation checks, audit trail generation, and intelligent batch record review significantly reduce compliance vulnerabilities common in paper-based systems. These strengths position AI as a foundational component of next-generation pharmaceutical QC systems, aligning with industry movements toward digitalisation, real-time release testing, and integration of Process Analytical Technology (PAT).

However, the results also highlight that successful AI adoption is not merely a technical challenge but an organisational one. Workforce resistance, limited AI literacy, and concerns about job displacement slow adoption. Legacy infrastructure and fragmented data environments restrict AI integration, while the absence of clear regulatory guidance creates caution among quality and compliance teams. These barriers suggest that AI implementation requires a holistic digital transformation strategy one that integrates technology, training, culture change, and governance.

In conclusion, AI offers substantial and measurable benefits for pharmaceutical quality control, enabling more accurate, predictive, and efficient quality assurance practices. Yet, to fully harness these advantages, organisations must invest in digital readiness, establish cross-functional collaboration, modernise infrastructure, and engage proactively with emerging regulatory expectations. AI is no longer an optional enhancement but a critical enabler of operational excellence and future competitiveness in pharmaceutical manufacturing. Strategic adoption and thoughtful integration will define how effectively the industry leverages AI to safeguard product quality and protect patient safety.

5. REFERENCES

1. Huanbutta K, et al. Artificial intelligence-driven pharmaceutical industry. *Int J Pharmaceutics*. 2024; [Epub ahead of print].
2. Kodumuru R, et al. Artificial Intelligence and Internet of Things Integration in Pharmaceutical Manufacturing. *PMC*. 2025; [cited 2025].
3. Rajesh MV, et al. Enhancing efficiency, product quality, and safety. *Pharm Manuf*. 2025; [Epub ahead of print].
4. Saha GCh, Lima N, Eni H, Saha H, Parida PK, Rathinavelu R, Jain SK, Haldar B. Artificial intelligence in pharmaceutical manufacturing: enhancing quality control and decision making. *ESCI+Rivista*. 2023;14(2):116–130.
5. Salunke A S, Kulkarni S R, Zade K S, Ahirrao M K, Shirasath M R. Automation and AI in Pharmaceutical Quality Assurance: A Review. *Int J Innov Res Technol (IJIRT)*. 2025;11(9):1744–1750.
6. Chakraborty A, et al. How the pharma industry benefits from AI-powered ERP. *IJCSE*. 2025;12(3): 17–22.
7. Yu L, Lee HW, Park KS. Deep learning-based visual inspection in pharmaceutical manufacturing: improving defect detection accuracy and efficiency. *Int J Pharm*. 2021;604:120735. doi:10.1016/j.ijpharm.2021.120735.
8. Vora J, Shah V, Dave A, Patel P. Application of machine learning tools for predictive analytics in pharmaceutical manufacturing. *J Pharm Innov*. 2022;17:1020–1034. doi:10.1007/s12247-021-09647-z.
9. Igarashi Y, Watanabe H. Real-time monitoring and process analytical technology (PAT) enhanced by artificial intelligence. *J Pharm Sci*. 2020;109(10):3070–3078. doi:10.1016/j.xphs.2020.06.001.
10. McDowall RD. Data integrity and compliance with GMP: a review of current issues. *J Validation Technol*. 2020;26(3):1–13.
11. Colombo SA, Kotz D, Rolando G. Regulatory considerations for AI/ML systems in pharmaceutical quality control. *Eur J Pharm Sci*. 2023;182:106357. doi:10.1016/j.ejphs.2022.106357.
12. Ahn J, Taraban MB. Implementation of robotics and AI in aseptic pharmaceutical quality assurance. *PDA J Pharm Sci Technol*. 2024;78(2):85–97. doi:10.5731/pdajpst.2023.012345.