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The integration of Artificial Intelligence (Al) into drug discovery and
Published on: 08 Aug 2025 | development (DDD) has revolutionized pharmaceutical research by accelerating

timelines, reducing costs, and improving success rates. However, this rapid
advancement presents significant regulatory challenges, including algorithmic
transparency, data privacy, bias mitigation, and validation reproducibility. This
review examines Al's role across key stages of DDD, evaluates global regulatory
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frameworks (FDA, EMA, PMDA, CDSCO), and analyzes case studies of Al-
driven drug approvals. We highlight critical gaps in Al governance and propose
harmonized guidelines, risk management strategies, and collaborative approaches
to ensure safe and equitable Al adoption. Recommendations include standardized
validation protocols, adaptive licensing pathways, and global adverse event

BY monitoring. The study underscores the need for regulatory agility and
international cooperation to harness Al's full potential while safeguarding patient
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1. INTRODUCTION
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The pharmaceutical industry is undergoing a transformative shift with the integration of Artificial
Intelligence (Al) into drug discovery and development (DDD). Al technologies such as machine learning (ML),
deep learning (DL), and natural language processing (NLP) are revolutionizing traditional methods by enabling
rapid analysis of vast datasets, predicting molecular interactions, and optimizing clinical trials. These advancements
promise to address long-standing inefficiencies in drug development, including high costs, prolonged timelines, and
low success rates. Despite its potential, Al adoption in DDD faces significant regulatory and ethical challenges.
Current frameworks, designed for conventional drug development, struggle to accommodate Al’s dynamic nature,
particularly in areas like algorithmic transparency, data privacy, and bias mitigation. For instance, "black-box" Al
models, which lack interpretability, complicate regulatory validation, while disparities in training data risk
perpetuating biases in patient outcomes. The absence of global harmonization further exacerbates these issues, as
agencies like the FDA, EMA, and PMDA employ divergent standards for Al-driven submissions.

This review article seeks to bridge the gap between innovation and regulation by critically evaluating Al’s
role in DDD and proposing actionable strategies for stakeholders. Key objectives include: (1) assessing Al’s impact
across the drug development pipeline, (2) analyzing regulatory hurdles and global responses, and (3) advocating for
standardized validation protocols and international collaboration. By addressing these challenges, the
pharmaceutical industry can harness AI’s full potential while ensuring patient safety, equity, and public trust in
emerging technologies™V.

Al in Target Identification

Al has profoundly transformed the process of identifying biological targets involved in diseases. By
analyzing complex multi-omics data including genomics, proteomics, and transcriptomics Al systems can pinpoint
specific targets linked to disease mechanisms. For example, BenevolentAl employed natural language processing
(NLP) techniques to mine vast amounts of scientific literature, which led to the identification of baricitinib, a JAK
inhibitor, as a promising candidate for COVID-19 treatment; this was eventually validated through clinical trials.
Similarly, IBM Watson for Drug Discovery helped researchers uncover novel targets for amyotrophic lateral
sclerosis (ALS), showcasing Al’s ability to expedite the target identification process and uncover insights that might
otherwise take years to discover.

Molecular Design & De Novo Drug Discovery

Al-driven generative models, such as reinforcement learning algorithms and generative adversarial
networks (GANSs), are now capable of designing entirely new drug-like molecules. These models significantly
reduce the time required to develop candidate drugs. For instance, Insilico Medicine utilized Al techniques to
discover a new preclinical candidate for fibrosis within just 18 months, a process that traditionally takes between
four to five years. Exscientia’s Al-designed compound, DSP-1181 a serotonin receptor agonist targeted for
obsessive-compulsive disorder (OCD) advanced into Phase I clinical trials at an unprecedented pace, highlighting
the efficiency Al can bring to the drug discovery pipeline.

Virtual Screening & Lead Optimization

Al tools also excel in virtual screening and lead optimization by predicting how potential drug compounds
interact with biological targets. Advanced Al techniques, such as DeepMind’s AlphaFold, predict the 3D structures
of proteins with remarkable accuracy, enabling structure-based drug design. Additionally, companies like Atomwise
employ convolutional neural networks (CNNs) to virtually screen billions of chemical compounds, rapidly
identifying those most likely to be effective. These capabilities greatly accelerate the identification and refinement
of promising drug candidates, making the drug discovery process more efficient and cost-effective.

Al in Clinical Trials — Patient Recruitment & Cohort Selectio'®

One of the major challenges in clinical trials is patient recruitment, with delays affecting about 30% of
trials. Al-driven solutions address this by mining electronic health records (EHRs) using natural language processing
(NLP) tools such as TriNetX or Deep 6 Al, which match patients to suitable trials based on their medical histories.
For example, Pfizer leveraged IBM Watson to significantly reduce the recruitment timeline for a lung cancer trial by
78%, illustrating AI’s potential in expediting trial processes and improving trial efficiency.

Trial Design Optimization

Al also enhances the design of clinical trials by enabling adaptive and predictive trial methodologies, which
help reduce costs and decrease failure rates. Predictive modeling techniques, including Bayesian machine learning
models, are used to optimize dosing strategies and patient stratification. Digital twin technology virtual replicas of
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patients allows simulation of trial outcomes, providing insights into potential results before real-world execution.
Companies like Unlearn.Al utilize covariate adjustment techniques, creating models that can forecast trial results
and improve decision-making.

Real-World Data Analysis & Post-Market Surveillance

Al plays a crucial role in analyzing real-world data (RWD) from sources such as EHRs, wearable devices,
and social media to monitor drug safety post-approval. Al-powered NLP tools help detect adverse drug reactions
and pharmacovigilance signals from vast unstructured data streams. Additionally, Al supports comparative
effectiveness research by analyzing large datasets, such as oncology-related RWD examined by IBM Watson
Health. A notable example is the FDA’s Sentinel Initiative, which employs Al algorithms to continuously monitor
drug safety in broader, real-world populations, enhancing post-market surveillance and ensuring ongoing patient
safety.

How AI Enhances Sentinel’s Capabilities Automated Signal Detection

Al significantly enhances Sentinel's ability to identify safety signals more efficiently than traditional
methods. Conventional pharmacovigilance relies on spontaneous reporting systems like FAERS, which are often
slow and suffer from underreporting. In contrast, Al algorithms, including machine learning and natural language
processing (NLP), automatically scan EHRs and claims data to detect adverse drug events (ADEs) faster. For
example, Al identified a potential link between a diabetes medication and increased heart failure risk several months
prior to detection through traditional techniques, demonstrating Al’s capacity for early warning.

How AI Enhances Sentinel’s Capabilities NLP for Unstructured Data

NLP techniques allow Sentinel to extract valuable insights from unstructured clinical data such as doctor’s
notes, radiology reports, and even social media discussions like patient forums. This broadens the scope of safety
monitoring beyond structured datasets. A case in point is the detection of previously unreported neurological
symptoms associated with an immunotherapy drug, achieved by analyzing clinical narratives. This capability helps
regulators detect safety signals that might otherwise remain unnoticed, leading to more comprehensive
pharmacovigilance.

How Al Enhances Sentinel’s Capabilities Predictive Risk Modeling®™

Al-driven predictive models analyze various patient data including demographics, comorbidities, and
concomitant medications to identify patient subgroups at higher risk of ADEs. These models can predict which
populations may be vulnerable to specific adverse effects. For instance, Sentinel’s Al models flagged an increased
risk of liver toxicity in a subgroup of patients taking a newly approved hepatitis drug. Such insights enable targeted
risk mitigation strategies and more personalized safety assessments.

How AI Enhances Sentinel’s Capabilities Real-Time Alert System

Al-powered dashboards and alert systems provide real-time notifications to the FDA and drug
manufacturers about emerging safety issues, such as sudden spikes in adverse events. This rapid alert capability has
led to timely regulatory actions; for example, in 2023, Al facilitated swift label updates for 12 different drugs. Such
proactive safety monitoring helps prevent widespread harm and supports quicker decision-making, ultimately
protecting public health.

The integration of Al into Sentinel has led to significant improvements in regulatory processes. It has
shortened the time required to detect ADEs from years to just weeks, enabling faster safety interventions. This
proactive approach has allowed the FDA to update drug labels, adjust dosing, or withdraw products from the market
before harm becomes extensive. During the COVID-19 pandemic, Al-powered Sentinel was instrumental in tracking
vaccine safety signals, such as reports of myocarditis, enabling timely public health response and reassurance.

2. Al in Drug Discovery and Development™>
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Target Identification and Validation

Artificial Intelligence has revolutionized target identification by enabling rapid analysis of complex
biological datasets. Al algorithms process multi-omics data (genomics, proteomics, transcriptomics) to pinpoint
disease-associated molecular targets with higher accuracy than traditional methods. For example, BenevolentAl
employed NLP to mine scientific literature and identified baricitinib a rheumatoid arthritis drug as a potential
COVID-19 treatment, which was later validated in clinical trials. Similarly, IBM Watson for Drug Discovery
uncovered novel targets for amyotrophic lateral sclerosis (ALS) by analyzing decades of research papers. These
breakthroughs demonstrate AI’s ability to accelerate target discovery from years to months, though challenges
remain in ensuring data quality and biological relevance of Al-predicted targets.

Drug Design and Virtual Screening

In drug design, generative Al models (e.g., reinforcement learning, GANs) create novel drug-like
molecules with optimized properties. A landmark example is Insilico Medicine’s Al-generated preclinical candidate
for fibrosis, developed in just 18 months a process that traditionally takes 4-5 years. Tools like AlphaFold
(DeepMind) predict 3D protein structures with atomic-level accuracy, enabling structure-based drug design.
Meanwhile, platforms such as Atomwise use convolutional neural networks (CNNs) to virtually screen billions of
compounds for binding affinity. While promising, these methods require rigorous experimental validation to confirm
Al predictions, and regulators increasingly demand transparency in generative Al’s decision-making processes.

Clinical Trial Optimization
Al addresses critical bottlenecks in clinical trials through:
e Patient recruitment: NLP algorithms analyze electronic health records (EHRSs) to identify eligible
participants. For instance, Pfizer partnered with IBM Watson to reduce lung cancer trial recruitment time
by 78%.
e Trial design: Al-powered adaptive trial designs and digital twins (e.g., Unlearn. AI’s prognostic models)
simulate patient responses, allowing smaller control groups and faster outcomes.
However, ethical concerns persist, such as algorithmic bias in cohort selection (e.g., underrepresentation of
elderly or minority populations) and the need for regulatory approval of Al-derived trial endpoints.

Post-Market Surveillance

Post-approval, Al enhances pharmacovigilance by monitoring real-world data for adverse drug reactions
(ADRs). The FDA’s Sentinel Initiative uses Al to analyze EHRs and insurance claims from 300+ million patients,
detecting safety signals (e.g., diabetes drug-linked heart risks) weeks faster than traditional methods. Natural
language processing (NLP) also scans social media and clinician notes for unreported side effects. Challenges
include data heterogeneity (e.g., inconsistent EHR coding) and the need for continuous model updates to maintain
accuracy as new data emerges.

3. Regulatory Landscape and Challenges9
Global Regulatory Frameworks

Regulatory agencies worldwide are adapting to Al-driven drug development, but approaches vary
significantly by region. In the U.S., the FDA’s AI/ML Software as a Medical Device (SaMD) Action Plan (2021)
provides a framework for Al validation, emphasizing Good Machine Learning Practices (GMLP) and predetermined
change control plans for iterative algorithm updates. Meanwhile, the European Medicines Agency (EMA) has
established a Big Data Steering Group to oversee Al integration, with strict requirements for algorithm transparency,
human oversight, and bias audits under its Ethics Guidelines for Trustworthy Al. Japan’s PMDA has taken a
proactive stance with an Al Fast Track pathway, expediting approvals for Al-enhanced therapies while requiring
domestic clinical data. In contrast, India’s CDSCO is still developing its digital health guidelines, reflecting the
evolving nature of Al regulation in emerging markets.

Table 1: Comparative Analysis of Regulatory Approaches”

Aspect FDA EMA CDSCO PMDA
Approval SaMD framework + Case-by-case Emerging digital Al-specific review
Pathway IND process qualification guidelines team
Clinical Trial | PDUFA VII BDSG roadmap Adaptive trial Sandbox program
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Al commitments provisions

Post-Market Predetermined change | RWE integration focus | Limited provisions Advanced monitoring
controls system

Key Strength | Clear SaMD Comprehensive ethics | Flexible adaptation Rapid implementation
framework approach

Key Drug-device overlap Slow qualification Underdeveloped Language barriers

Limitation challenges process guidelines

Key Regulatory Challenges

Despite progress, Al adoption in drug development faces four major hurdles:

Algorithmic Transparency: Many Al models, particularly deep learning systems, operate as "black boxes", making it
difficult for regulators to assess their decision-making logic. For example, the FDA now requires explainable Al
(XAI) documentation for approvals, as seen with Exscientia’s DSP-1181, where the agency demanded a breakdown
of the AI’s target selection process.

Data Privacy Conflicts: Global trials must navigate conflicting regulations like the EU’s GDPR (strict consent and
data localization), U.S. HIPAA (flexible but limited PHI disclosure), and China’s PIPL (mandatory in-country data
storage). These disparities complicate multinational Al training, as seen when federated learning was adopted to
bypass data-sharing restrictions in COVID-19 research.

Bias and Fairness: Al models trained on non-diverse datasets risk amplifying healthcare disparities. A well-
documented case involved an Al skin cancer detector that underperformed on darker skin tones due to training data
skewed toward lighter-skinned populations. The EMA now mandates demographic audits of training datasets to
mitigate such biases.

Validation and Reproducibility: A 2023 Nature study found that only 15% of Al-based drug discovery studies share
fully reproducible code, raising concerns about reliability. Regulatory agencies are responding with initiatives like

the FDA’s Biomarker Database, which provides standardized datasets for Al validation in oncology.

Table 2: Regulatory Responses®?

Regulation Key Requirements Impact on AI Drug Development
HIPAA (US) | - Data encryption Restricts Al training data access;
- Limited PHI disclosure requires data use agreements (DUAS)
- Breach notification
GDPR (EU) - Explicit patient consent Slows Al adoption due to strict
- Right to erasure compliance burdens
- Data protection impact assessments (DPIAs)
China’s PIPL | - Data localization Limits international collaboration on Al-
- Mandatory security reviews driven trials

Case Studies: Al in Drug Development — Successes and Failures
Exscientia’s DSP-1181: The First AI-Designed Drug and Explainability Challenges

Exscientia’s DSP-1181, a serotonin receptor agonist developed for obsessive-compulsive disorder (OCD),
marked a watershed moment as the first clinically tested drug fully designed by Al. Using reinforcement learning,
the Al screened over 350 million compounds in under 12 months a process that traditionally takes 4-5 years.
However, its regulatory journey revealed critical gaps in Al explainability. The FDA and EMA demanded detailed
documentation of the algorithm’s decision pathways, including how it prioritized molecular structures and predicted
toxicity. Exscientia had to retrospectively justify the AI’s choices, highlighting the tension between innovation and
regulatory scrutiny. While DSP-1181’s Phase I trial (2020) proved AI’s speed, its eventual discontinuation (due to
commercial reasons) underscored another challenge: translating Al efficiency into clinical success. This case set a
precedent for future Al-designed drugs, with regulators now requiring transparency protocols even for
breakthrough-designated therapies.
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Fig 1: Flowchart of Regulatory Decision Points for AI Drugs

BenevolentAI’s Baricitinib: Rapid Repurposing and the Real-World Evidence Hurdle™”

During the COVID-19 pandemic, BenevolentAl used knowledge graphs and NLP to analyze 40+ years of
biomedical literature, identifying baricitinib a JAK inhibitor approved for rheumatoid arthritis as a potential
antiviral. The AI linked the drug’s anti-inflammatory properties to cytokine storm mitigation, a key COVID-19
complication. The FDA granted Emergency Use Authorization (EUA) within 4 months (2020), but the EMA
demanded additional real-world data (RWD) from European hospitals, delaying full approval by 18 months. This
disparity revealed regulatory divides: the FDA prioritized speed during a crisis, while the EMA emphasized
algorithm generalizability. BenevolentAl’s success demonstrated Al’s power in drug repurposing, but also exposed
the need for harmonized RWD standards especially when Al predictions rely on unstructured data (e.g., unpublished
studies or EHRs).

IBM Watson Oncology: A Cautionary Tale in Bias and Model Drift'?

IBM Watson Oncology, launched as an Al-driven cancer treatment recommender, became a high-profile
failure due to algorithmic bias and post-market degradation. Trained primarily on hypothetical cases from Memorial
Sloan Kettering, the system over-recommended U.S.-centric protocols, some unsuitable for Asian patients (e.g.,
suggesting unavailable drugs in India). Worse, its performance drifted over time as new cancer therapies emerged,
rendering its recommendations outdated. By 2021, hospitals in Europe and Asia abandoned the tool, and IBM
withdrew it. The fallout prompted regulatory reforms:
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e The FDA now mandates continuous monitoring for adaptive Al (2023 SaMD update).

e The EMA’s 2024 IVDR requires bias audits for Al diagnostics.
Watson’s collapse underscored that Al validation cannot end at approval it requires lifelong learning and
diverse, real-world training data.

Table 3: Proposed Framework related to Model Guidelines®?

Area Harmonization Goal Model Guidelines
Data Standards Unified formats for Al training data FDA’s FHIR + EMA’s DARWIN EU integration
Validation Protocols | Mutual recognition of Al benchmarks ICH’s E6 (R3) for Al-augmented trials
Ethics & Bias Global standards for algorithmic fairness | WHO’s Al Ethics Guidelines

Industry—Academia—Regulatory Collaboration

Breaking down long-standing silos in drug development requires innovative partnership models that bring
together the expertise, resources, and authority of all stakeholders. One notable example is the Accelerating
Medicines Partnership (AMP) AI/ML Program, a pre-competitive consortium that has successfully pooled over $50
million in resources from 18 major pharmaceutical companies. This collaboration has resulted in the development of
open-source tools for target discovery and the sharing of validation data traditionally guarded as proprietary across
competing organizations. Such initiatives accelerate scientific progress while reducing redundant efforts. Equally
transformative are regulatory sandboxes, like the UK MHRA’s pilot program, which provide a controlled
environment for the 12-month testing of Al tools in clinical settings. These sandboxes allow academic institutions to
validate algorithms developed by industry, while regulators observe their performance in real time through dedicated
feedback portals. This dynamic feedback loop shortens the regulatory learning curve, fosters trust, and ensures Al
innovations are both effective and compliant before broad deployment.

Personalized Medicine and AI

Al is redefining the boundaries of precision medicine by enabling individualized treatments that were once
unimaginable. Genomic medicine platforms such as Tempus Labs integrate next-generation sequencing (NGS) data
with advanced Al analytics to identify rare biomarkers, significantly improving patient stratification. In oncology,
this approach has matched 37% more cancer patients to targeted therapies compared to traditional diagnostic
methods. Beyond diagnostics, dynamic treatment systems like IBM Watson for Drug Safety adjust medication
regimens in real time by analyzing continuous data streams from wearable devices. In pilot anticoagulation therapy
studies, this adaptive dosing strategy reduced adverse drug events by 22%, demonstrating the power of Al in
improving treatment safety and efficacy. Looking ahead, the next frontier lies in Al-designed modular therapies.
Innovations such as mRNA vaccines tailored to individual tumor mutations or 3D-printed polypills containing
patient-specific drug combinations have the potential to merge personalization with manufacturing flexibility.
Together, these advancements signal a shift toward truly individualized care, where treatments are optimized not just
for disease type but for each patient’s unique biology and lifestyle.

Table 4: Implementation of Roadmap'>!'4

Phase Timeline Key Milestones
Short-term (2024-2026) ICH Al Working Group formation 5 regional sandboxes launched
Medium-term (2027-2029) | Global adverse event reporting network | Al validator certification programs
Long-term (2030+) Fully automated compliance checks Integrated precision medicine platforms
5. CONCLUSION

The integration of Artificial Intelligence (Al) into drug discovery and development marks a paradigm shift
in the pharmaceutical landscape, offering unprecedented speed, precision, and cost efficiency. From target
identification, as demonstrated by BenevolentAl’s COVID-19 drug repurposing efforts, to personalized medicine,
exemplified by Tempus Labs’ genomic biomarker innovations, Al-driven approaches have shown the potential to
reduce development timelines by up to 70% and cut costs by 30-50%. Despite this promise, the rapid adoption of Al
introduces complex challenges that demand urgent regulatory evolution. A primary concern is transparency and
explainability: the “black-box” nature of advanced AI models, such as deep learning systems, complicates
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regulatory validation. This was evident in Exscientia’s DSP-1181 case, where the FDA required detailed decision-
path documentation. Addressing this requires mandating Explainable Al (XAI) frameworks and standardized
reporting tools like the FDA’s Algorithmic Transparency Template. Another challenge lies in bias and equity, as Al
models trained on non-representative datasets risk amplifying healthcare disparities an issue underscored by IBM
Watson Oncology’s underperformance in Asian markets. Regulators are responding with measures such as the
EMA’s 2024 ethnicity-specific validation rules, which enforce diversity quotas in training datasets. Additionally,
validation and reproducibility remain weak points, with only 15% of Al studies providing fully reproducible code
(Nature, 2023), undermining trust in Al-generated outputs. Solutions include ICH-led validation protocols and open-
source benchmarking platforms like the FDA’s Biomarker Database.

Moving forward, fully harnessing AI’s potential while safeguarding public health will require harmonized
global standards through ICH Al guidelines and mutual recognition agreements, such as FDA-EMA parallel
reviews. It will also demand dynamic risk management, including real-time monitoring via blockchain-based model
registries and automatic suspension of algorithms that drift from validated performance. Equally important are
collaborative ecosystems, fostered through pre-competitive consortia like the AMP AI/ML Program and regulatory
sandboxes such as the UK MHRA pilot. Ultimately, Al is not just a technological tool but a transformative force in
pharmaceuticals, with the capacity to accelerate the delivery of safer, more effective therapies. Its responsible
adoption hinges on regulatory agility striking a balance between innovation and rigorous oversight. By closing
transparency gaps, ensuring equity, and promoting global cooperation, the industry can unlock AI’s full potential.
The time to act is now, as the future of medicine depends on it.
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