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The integration of Artificial Intelligence (AI) into drug discovery and 

development (DDD) has revolutionized pharmaceutical research by accelerating 

timelines, reducing costs, and improving success rates. However, this rapid 

advancement presents significant regulatory challenges, including algorithmic 

transparency, data privacy, bias mitigation, and validation reproducibility. This 

review examines AI's role across key stages of DDD, evaluates global regulatory 

frameworks (FDA, EMA, PMDA, CDSCO), and analyzes case studies of AI-

driven drug approvals. We highlight critical gaps in AI governance and propose 

harmonized guidelines, risk management strategies, and collaborative approaches 

to ensure safe and equitable AI adoption. Recommendations include standardized 

validation protocols, adaptive licensing pathways, and global adverse event 

monitoring. The study underscores the need for regulatory agility and 

international cooperation to harness AI's full potential while safeguarding patient 

safety and public trust.                
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The pharmaceutical industry is undergoing a transformative shift with the integration of Artificial 
Intelligence (AI) into drug discovery and development (DDD). AI technologies such as machine learning (ML), 
deep learning (DL), and natural language processing (NLP) are revolutionizing traditional methods by enabling 
rapid analysis of vast datasets, predicting molecular interactions, and optimizing clinical trials. These advancements 
promise to address long-standing inefficiencies in drug development, including high costs, prolonged timelines, and 
low success rates. Despite its potential, AI adoption in DDD faces significant regulatory and ethical challenges. 
Current frameworks, designed for conventional drug development, struggle to accommodate AI’s dynamic nature, 
particularly in areas like algorithmic transparency, data privacy, and bias mitigation. For instance, "black-box" AI 
models, which lack interpretability, complicate regulatory validation, while disparities in training data risk 
perpetuating biases in patient outcomes. The absence of global harmonization further exacerbates these issues, as 
agencies like the FDA, EMA, and PMDA employ divergent standards for AI-driven submissions. 

This review article seeks to bridge the gap between innovation and regulation by critically evaluating AI’s 
role in DDD and proposing actionable strategies for stakeholders. Key objectives include: (1) assessing AI’s impact 
across the drug development pipeline, (2) analyzing regulatory hurdles and global responses, and (3) advocating for 
standardized validation protocols and international collaboration. By addressing these challenges, the 
pharmaceutical industry can harness AI’s full potential while ensuring patient safety, equity, and public trust in 
emerging technologies(1). 
 

AI in Target Identification 

AI has profoundly transformed the process of identifying biological targets involved in diseases. By 
analyzing complex multi-omics data including genomics, proteomics, and transcriptomics AI systems can pinpoint 
specific targets linked to disease mechanisms. For example, BenevolentAI employed natural language processing 
(NLP) techniques to mine vast amounts of scientific literature, which led to the identification of baricitinib, a JAK 
inhibitor, as a promising candidate for COVID-19 treatment; this was eventually validated through clinical trials. 
Similarly, IBM Watson for Drug Discovery helped researchers uncover novel targets for amyotrophic lateral 
sclerosis (ALS), showcasing AI’s ability to expedite the target identification process and uncover insights that might 
otherwise take years to discover. 
 

Molecular Design & De Novo Drug Discovery 

AI-driven generative models, such as reinforcement learning algorithms and generative adversarial 
networks (GANs), are now capable of designing entirely new drug-like molecules. These models significantly 
reduce the time required to develop candidate drugs. For instance, Insilico Medicine utilized AI techniques to 
discover a new preclinical candidate for fibrosis within just 18 months, a process that traditionally takes between 
four to five years. Exscientia’s AI-designed compound, DSP-1181 a serotonin receptor agonist targeted for 
obsessive-compulsive disorder (OCD) advanced into Phase I clinical trials at an unprecedented pace, highlighting 
the efficiency AI can bring to the drug discovery pipeline. 
 

Virtual Screening & Lead Optimization 

AI tools also excel in virtual screening and lead optimization by predicting how potential drug compounds 
interact with biological targets. Advanced AI techniques, such as DeepMind’s AlphaFold, predict the 3D structures 
of proteins with remarkable accuracy, enabling structure-based drug design. Additionally, companies like Atomwise 
employ convolutional neural networks (CNNs) to virtually screen billions of chemical compounds, rapidly 
identifying those most likely to be effective. These capabilities greatly accelerate the identification and refinement 
of promising drug candidates, making the drug discovery process more efficient and cost-effective. 
 

AI in Clinical Trials – Patient Recruitment & Cohort Selectio(2) 

One of the major challenges in clinical trials is patient recruitment, with delays affecting about 30% of 
trials. AI-driven solutions address this by mining electronic health records (EHRs) using natural language processing 
(NLP) tools such as TriNetX or Deep 6 AI, which match patients to suitable trials based on their medical histories. 
For example, Pfizer leveraged IBM Watson to significantly reduce the recruitment timeline for a lung cancer trial by 
78%, illustrating AI’s potential in expediting trial processes and improving trial efficiency. 
 

Trial Design Optimization 

AI also enhances the design of clinical trials by enabling adaptive and predictive trial methodologies, which 
help reduce costs and decrease failure rates. Predictive modeling techniques, including Bayesian machine learning 
models, are used to optimize dosing strategies and patient stratification. Digital twin technology virtual replicas of 
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patients allows simulation of trial outcomes, providing insights into potential results before real-world execution. 
Companies like Unlearn.AI utilize covariate adjustment techniques, creating models that can forecast trial results 
and improve decision-making. 
 

Real-World Data Analysis & Post-Market Surveillance 

AI plays a crucial role in analyzing real-world data (RWD) from sources such as EHRs, wearable devices, 
and social media to monitor drug safety post-approval. AI-powered NLP tools help detect adverse drug reactions 
and pharmacovigilance signals from vast unstructured data streams. Additionally, AI supports comparative 
effectiveness research by analyzing large datasets, such as oncology-related RWD examined by IBM Watson 
Health. A notable example is the FDA’s Sentinel Initiative, which employs AI algorithms to continuously monitor 
drug safety in broader, real-world populations, enhancing post-market surveillance and ensuring ongoing patient 
safety. 
 

How AI Enhances Sentinel’s Capabilities Automated Signal Detection 

AI significantly enhances Sentinel's ability to identify safety signals more efficiently than traditional 
methods. Conventional pharmacovigilance relies on spontaneous reporting systems like FAERS, which are often 
slow and suffer from underreporting. In contrast, AI algorithms, including machine learning and natural language 
processing (NLP), automatically scan EHRs and claims data to detect adverse drug events (ADEs) faster. For 
example, AI identified a potential link between a diabetes medication and increased heart failure risk several months 
prior to detection through traditional techniques, demonstrating AI’s capacity for early warning. 
 

How AI Enhances Sentinel’s Capabilities NLP for Unstructured Data 

NLP techniques allow Sentinel to extract valuable insights from unstructured clinical data such as doctor’s 
notes, radiology reports, and even social media discussions like patient forums. This broadens the scope of safety 
monitoring beyond structured datasets. A case in point is the detection of previously unreported neurological 
symptoms associated with an immunotherapy drug, achieved by analyzing clinical narratives. This capability helps 
regulators detect safety signals that might otherwise remain unnoticed, leading to more comprehensive 
pharmacovigilance. 
 

How AI Enhances Sentinel’s Capabilities Predictive Risk Modeling(3) 

AI-driven predictive models analyze various patient data including demographics, comorbidities, and 
concomitant medications to identify patient subgroups at higher risk of ADEs. These models can predict which 
populations may be vulnerable to specific adverse effects. For instance, Sentinel’s AI models flagged an increased 
risk of liver toxicity in a subgroup of patients taking a newly approved hepatitis drug. Such insights enable targeted 
risk mitigation strategies and more personalized safety assessments. 
 
How AI Enhances Sentinel’s Capabilities Real-Time Alert System 

AI-powered dashboards and alert systems provide real-time notifications to the FDA and drug 
manufacturers about emerging safety issues, such as sudden spikes in adverse events. This rapid alert capability has 
led to timely regulatory actions; for example, in 2023, AI facilitated swift label updates for 12 different drugs. Such 
proactive safety monitoring helps prevent widespread harm and supports quicker decision-making, ultimately 
protecting public health. 

The integration of AI into Sentinel has led to significant improvements in regulatory processes. It has 
shortened the time required to detect ADEs from years to just weeks, enabling faster safety interventions. This 
proactive approach has allowed the FDA to update drug labels, adjust dosing, or withdraw products from the market 
before harm becomes extensive. During the COVID-19 pandemic, AI-powered Sentinel was instrumental in tracking 
vaccine safety signals, such as reports of myocarditis, enabling timely public health response and reassurance. 
 

2. AI in Drug Discovery and Development(4,5) 
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Target Identification and Validation 

Artificial Intelligence has revolutionized target identification by enabling rapid analysis of complex 
biological datasets. AI algorithms process multi-omics data (genomics, proteomics, transcriptomics) to pinpoint 
disease-associated molecular targets with higher accuracy than traditional methods. For example, BenevolentAI 
employed NLP to mine scientific literature and identified baricitinib a rheumatoid arthritis drug as a potential 
COVID-19 treatment, which was later validated in clinical trials. Similarly, IBM Watson for Drug Discovery 
uncovered novel targets for amyotrophic lateral sclerosis (ALS) by analyzing decades of research papers. These 
breakthroughs demonstrate AI’s ability to accelerate target discovery from years to months, though challenges 
remain in ensuring data quality and biological relevance of AI-predicted targets. 
 
Drug Design and Virtual Screening 

In drug design, generative AI models (e.g., reinforcement learning, GANs) create novel drug-like 
molecules with optimized properties. A landmark example is Insilico Medicine’s AI-generated preclinical candidate 
for fibrosis, developed in just 18 months a process that traditionally takes 4–5 years. Tools like AlphaFold 

(DeepMind) predict 3D protein structures with atomic-level accuracy, enabling structure-based drug design. 
Meanwhile, platforms such as Atomwise use convolutional neural networks (CNNs) to virtually screen billions of 
compounds for binding affinity. While promising, these methods require rigorous experimental validation to confirm 
AI predictions, and regulators increasingly demand transparency in generative AI’s decision-making processes. 
 

Clinical Trial Optimization 

AI addresses critical bottlenecks in clinical trials through: 

 Patient recruitment: NLP algorithms analyze electronic health records (EHRs) to identify eligible 
participants. For instance, Pfizer partnered with IBM Watson to reduce lung cancer trial recruitment time 
by 78%. 

 Trial design: AI-powered adaptive trial designs and digital twins (e.g., Unlearn. AI’s prognostic models) 
simulate patient responses, allowing smaller control groups and faster outcomes. 
However, ethical concerns persist, such as algorithmic bias in cohort selection (e.g., underrepresentation of 
elderly or minority populations) and the need for regulatory approval of AI-derived trial endpoints. 

 

Post-Market Surveillance 

Post-approval, AI enhances pharmacovigilance by monitoring real-world data for adverse drug reactions 
(ADRs). The FDA’s Sentinel Initiative uses AI to analyze EHRs and insurance claims from 300+ million patients, 
detecting safety signals (e.g., diabetes drug-linked heart risks) weeks faster than traditional methods. Natural 
language processing (NLP) also scans social media and clinician notes for unreported side effects. Challenges 
include data heterogeneity (e.g., inconsistent EHR coding) and the need for continuous model updates to maintain 
accuracy as new data emerges. 
 
3. Regulatory Landscape and Challenges(1,6) 

Global Regulatory Frameworks 

Regulatory agencies worldwide are adapting to AI-driven drug development, but approaches vary 
significantly by region. In the U.S., the FDA’s AI/ML Software as a Medical Device (SaMD) Action Plan (2021) 
provides a framework for AI validation, emphasizing Good Machine Learning Practices (GMLP) and predetermined 
change control plans for iterative algorithm updates. Meanwhile, the European Medicines Agency (EMA) has 
established a Big Data Steering Group to oversee AI integration, with strict requirements for algorithm transparency, 
human oversight, and bias audits under its Ethics Guidelines for Trustworthy AI. Japan’s PMDA has taken a 
proactive stance with an AI Fast Track pathway, expediting approvals for AI-enhanced therapies while requiring 
domestic clinical data. In contrast, India’s CDSCO is still developing its digital health guidelines, reflecting the 
evolving nature of AI regulation in emerging markets. 

 
Table 1: Comparative Analysis of Regulatory Approaches(7) 

 

Aspect FDA EMA CDSCO PMDA 

Approval 
Pathway 

SaMD framework + 
IND process 

Case-by-case 
qualification 

Emerging digital 
guidelines 

AI-specific review 
team 

Clinical Trial PDUFA VII BDSG roadmap Adaptive trial Sandbox program 
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AI commitments provisions 

Post-Market Predetermined change 
controls 

RWE integration focus Limited provisions Advanced monitoring 
system 

Key Strength Clear SaMD 
framework 

Comprehensive ethics 
approach 

Flexible adaptation Rapid implementation 

Key 
Limitation 

Drug-device overlap 
challenges 

Slow qualification 
process 

Underdeveloped 
guidelines 

Language barriers 

 

 

Key Regulatory Challenges 

Despite progress, AI adoption in drug development faces four major hurdles: 
Algorithmic Transparency: Many AI models, particularly deep learning systems, operate as "black boxes", making it 
difficult for regulators to assess their decision-making logic. For example, the FDA now requires explainable AI 
(XAI) documentation for approvals, as seen with Exscientia’s DSP-1181, where the agency demanded a breakdown 
of the AI’s target selection process. 
 

Data Privacy Conflicts: Global trials must navigate conflicting regulations like the EU’s GDPR (strict consent and 
data localization), U.S. HIPAA (flexible but limited PHI disclosure), and China’s PIPL (mandatory in-country data 
storage). These disparities complicate multinational AI training, as seen when federated learning was adopted to 
bypass data-sharing restrictions in COVID-19 research. 
 

Bias and Fairness: AI models trained on non-diverse datasets risk amplifying healthcare disparities. A well-
documented case involved an AI skin cancer detector that underperformed on darker skin tones due to training data 
skewed toward lighter-skinned populations. The EMA now mandates demographic audits of training datasets to 
mitigate such biases. 
 

Validation and Reproducibility: A 2023 Nature study found that only 15% of AI-based drug discovery studies share 
fully reproducible code, raising concerns about reliability. Regulatory agencies are responding with initiatives like 
the FDA’s Biomarker Database, which provides standardized datasets for AI validation in oncology. 
 

Table 2: Regulatory Responses(8,9) 

 

Regulation Key Requirements Impact on AI Drug Development 

HIPAA (US) - Data encryption 
- Limited PHI disclosure 
- Breach notification 

Restricts AI training data access; 
requires data use agreements (DUAs) 

GDPR (EU) - Explicit patient consent 
- Right to erasure 
- Data protection impact assessments (DPIAs) 

Slows AI adoption due to strict 

compliance burdens 

China’s PIPL - Data localization 
- Mandatory security reviews 

Limits international collaboration on AI-
driven trials 

 

Case Studies: AI in Drug Development – Successes and Failures 

Exscientia’s DSP-1181: The First AI-Designed Drug and Explainability Challenges 

Exscientia’s DSP-1181, a serotonin receptor agonist developed for obsessive-compulsive disorder (OCD), 
marked a watershed moment as the first clinically tested drug fully designed by AI. Using reinforcement learning, 
the AI screened over 350 million compounds in under 12 months a process that traditionally takes 4–5 years. 
However, its regulatory journey revealed critical gaps in AI explainability. The FDA and EMA demanded detailed 
documentation of the algorithm’s decision pathways, including how it prioritized molecular structures and predicted 
toxicity. Exscientia had to retrospectively justify the AI’s choices, highlighting the tension between innovation and 
regulatory scrutiny. While DSP-1181’s Phase I trial (2020) proved AI’s speed, its eventual discontinuation (due to 
commercial reasons) underscored another challenge: translating AI efficiency into clinical success. This case set a 
precedent for future AI-designed drugs, with regulators now requiring transparency protocols even for 
breakthrough-designated therapies. 
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Fig 1: Flowchart of Regulatory Decision Points for AI Drugs 

 
BenevolentAI’s Baricitinib: Rapid Repurposing and the Real-World Evidence Hurdle(10) 

During the COVID-19 pandemic, BenevolentAI used knowledge graphs and NLP to analyze 40+ years of 
biomedical literature, identifying baricitinib a JAK inhibitor approved for rheumatoid arthritis as a potential 
antiviral. The AI linked the drug’s anti-inflammatory properties to cytokine storm mitigation, a key COVID-19 
complication. The FDA granted Emergency Use Authorization (EUA) within 4 months (2020), but the EMA 
demanded additional real-world data (RWD) from European hospitals, delaying full approval by 18 months. This 
disparity revealed regulatory divides: the FDA prioritized speed during a crisis, while the EMA emphasized 
algorithm generalizability. BenevolentAI’s success demonstrated AI’s power in drug repurposing, but also exposed 
the need for harmonized RWD standards especially when AI predictions rely on unstructured data (e.g., unpublished 
studies or EHRs). 
 
IBM Watson Oncology: A Cautionary Tale in Bias and Model Drift(11) 

IBM Watson Oncology, launched as an AI-driven cancer treatment recommender, became a high-profile 
failure due to algorithmic bias and post-market degradation. Trained primarily on hypothetical cases from Memorial 
Sloan Kettering, the system over-recommended U.S.-centric protocols, some unsuitable for Asian patients (e.g., 
suggesting unavailable drugs in India). Worse, its performance drifted over time as new cancer therapies emerged, 
rendering its recommendations outdated. By 2021, hospitals in Europe and Asia abandoned the tool, and IBM 
withdrew it. The fallout prompted regulatory reforms: 
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 The FDA now mandates continuous monitoring for adaptive AI (2023 SaMD update). 

 The EMA’s 2024 IVDR requires bias audits for AI diagnostics. 
Watson’s collapse underscored that AI validation cannot end at approval it requires lifelong learning and 
diverse, real-world training data. 

 

Table 3: Proposed Framework related to Model Guidelines(12) 

 

Area Harmonization Goal Model Guidelines 

Data Standards Unified formats for AI training data FDA’s FHIR + EMA’s DARWIN EU integration 

Validation Protocols Mutual recognition of AI benchmarks ICH’s E6 (R3) for AI-augmented trials 

Ethics & Bias Global standards for algorithmic fairness WHO’s AI Ethics Guidelines 

 
Industry–Academia–Regulatory Collaboration 

Breaking down long-standing silos in drug development requires innovative partnership models that bring 
together the expertise, resources, and authority of all stakeholders. One notable example is the Accelerating 
Medicines Partnership (AMP) AI/ML Program, a pre-competitive consortium that has successfully pooled over $50 
million in resources from 18 major pharmaceutical companies. This collaboration has resulted in the development of 
open-source tools for target discovery and the sharing of validation data traditionally guarded as proprietary across 
competing organizations. Such initiatives accelerate scientific progress while reducing redundant efforts. Equally 
transformative are regulatory sandboxes, like the UK MHRA’s pilot program, which provide a controlled 
environment for the 12-month testing of AI tools in clinical settings. These sandboxes allow academic institutions to 
validate algorithms developed by industry, while regulators observe their performance in real time through dedicated 
feedback portals. This dynamic feedback loop shortens the regulatory learning curve, fosters trust, and ensures AI 
innovations are both effective and compliant before broad deployment. 
 

Personalized Medicine and AI 

AI is redefining the boundaries of precision medicine by enabling individualized treatments that were once 
unimaginable. Genomic medicine platforms such as Tempus Labs integrate next-generation sequencing (NGS) data 
with advanced AI analytics to identify rare biomarkers, significantly improving patient stratification. In oncology, 
this approach has matched 37% more cancer patients to targeted therapies compared to traditional diagnostic 
methods. Beyond diagnostics, dynamic treatment systems like IBM Watson for Drug Safety adjust medication 
regimens in real time by analyzing continuous data streams from wearable devices. In pilot anticoagulation therapy 
studies, this adaptive dosing strategy reduced adverse drug events by 22%, demonstrating the power of AI in 
improving treatment safety and efficacy. Looking ahead, the next frontier lies in AI-designed modular therapies. 
Innovations such as mRNA vaccines tailored to individual tumor mutations or 3D-printed polypills containing 
patient-specific drug combinations have the potential to merge personalization with manufacturing flexibility. 
Together, these advancements signal a shift toward truly individualized care, where treatments are optimized not just 
for disease type but for each patient’s unique biology and lifestyle. 
 

Table 4: Implementation of Roadmap(13,14) 

 

Phase Timeline Key Milestones 

Short-term (2024-2026) ICH AI Working Group formation 5 regional sandboxes launched 

Medium-term (2027-2029) Global adverse event reporting network AI validator certification programs 

Long-term (2030+) Fully automated compliance checks Integrated precision medicine platforms 

 
5. CONCLUSION 
 

The integration of Artificial Intelligence (AI) into drug discovery and development marks a paradigm shift 
in the pharmaceutical landscape, offering unprecedented speed, precision, and cost efficiency. From target 
identification, as demonstrated by BenevolentAI’s COVID-19 drug repurposing efforts, to personalized medicine, 
exemplified by Tempus Labs’ genomic biomarker innovations, AI-driven approaches have shown the potential to 
reduce development timelines by up to 70% and cut costs by 30–50%. Despite this promise, the rapid adoption of AI 
introduces complex challenges that demand urgent regulatory evolution. A primary concern is transparency and 
explainability: the “black-box” nature of advanced AI models, such as deep learning systems, complicates 
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regulatory validation. This was evident in Exscientia’s DSP-1181 case, where the FDA required detailed decision-
path documentation. Addressing this requires mandating Explainable AI (XAI) frameworks and standardized 
reporting tools like the FDA’s Algorithmic Transparency Template. Another challenge lies in bias and equity, as AI 
models trained on non-representative datasets risk amplifying healthcare disparities an issue underscored by IBM 
Watson Oncology’s underperformance in Asian markets. Regulators are responding with measures such as the 
EMA’s 2024 ethnicity-specific validation rules, which enforce diversity quotas in training datasets. Additionally, 
validation and reproducibility remain weak points, with only 15% of AI studies providing fully reproducible code 
(Nature, 2023), undermining trust in AI-generated outputs. Solutions include ICH-led validation protocols and open-
source benchmarking platforms like the FDA’s Biomarker Database. 

Moving forward, fully harnessing AI’s potential while safeguarding public health will require harmonized 
global standards through ICH AI guidelines and mutual recognition agreements, such as FDA-EMA parallel 
reviews. It will also demand dynamic risk management, including real-time monitoring via blockchain-based model 
registries and automatic suspension of algorithms that drift from validated performance. Equally important are 
collaborative ecosystems, fostered through pre-competitive consortia like the AMP AI/ML Program and regulatory 
sandboxes such as the UK MHRA pilot. Ultimately, AI is not just a technological tool but a transformative force in 
pharmaceuticals, with the capacity to accelerate the delivery of safer, more effective therapies. Its responsible 
adoption hinges on regulatory agility striking a balance between innovation and rigorous oversight. By closing 
transparency gaps, ensuring equity, and promoting global cooperation, the industry can unlock AI’s full potential. 
The time to act is now, as the future of medicine depends on it. 
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